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Absiract, Within the framework of Jones calculus a model is presented for the
optics in incommensurately modulated structures. The results are compared with
measurements of the birefringence Ar{0,0,1} and of the optical activity coeflicient
(0,0,1)} for [N{CHa)a}2ZnCly. The model describes the spatial dispersion of the
modulated dielectric tensor to vary along the modulation wave direction {parallel
to the c axis) in the plane perpendicular to this direction (the (a,b} plane). The
model shows that despite the fact that the average structure js centrosymmetric
optical activity can occur due to the incommensurate modulation. The experimental
values can be explained as the consequence of the periodic spatial dispersion of the
dielectric tensor, together with appropriate boundary surfaces of the finite crystal,
which represent a spontaneous breaking of the inversion symmetry of the modulated
structure,

1. Introduction

The development, in recent years, of accurate equipment to determine the gyration
tensor (which describes the optical activity) and the birefringence in crystals, has
opened new fields of investigation. The high-accuracy universal polarimeter (HAUP),
developed by Kobayashi et el (1986), has been used to determine the optical activity
in the incommensurate (INC) phases of different materials (Saito et al 1987, Meekes
and Janner 1988, Dijkstra and Janner 1990). The presence of a gyrational effect is
remarkable, because both the space group of the average structure and the superspace
group of these INC phases are centrosymmetric and should therefore not allow optical
activity,

The optical activity is understood to originaie from the spatial dispersion in the
dielectrical properties of the crystal. Several authors have discussed the effects of
this dispersion on the birefringence (Golovko and Levanyuk 1979, Fousek and Kroupa
1986, Meekes and Janner 1988), but a description of the optical activity turned out to
be cumbersome. Meckes and Janner showed that there are some Fourier components
of the gyration tensor which are allowed by the superspace group symmetry. Their
approach predicts the directions of light propagation for which opt.icai activity may
occur, without specifying the corresponding fields.
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With a HAUP apparatus built in our laboratory we determined the gyration coeffi-
cient G(0,0, 1) and the birefringence An(0,0, 1) for [N(CH,),],ZnCl, (tetramethylam-
monium tetrachlorozincate (TMAZC)). Below 7, = 297 K the INC phase of TMAZC can
be described by the superspace group Permnn(00v)(1s1), the modulation wavevector
being ¢ = ye" (Madariaga et ol 1987). At the lock-in phase transition temperature
T, = 280 K the modulation becomes commensurate: g = 2/5¢*. The polarization of
the modulation is along the & axis, which in the lock-in phase gives a spontaneous po-
larization P, along the same direction. Although Saito et al (1987) reported G(0,0,1)
to be zero in the INC phase, we find it to be non-vanishing. The gyration effect has
been determined along both extinction directions {parallel to the @ and axes), giving
different results. ,

In this paper a phenomenclogical model will be presented. It describes the gy-
ration and birefringence, taking into account that the spatial dispersion due to the
modulation causes the dielectric tensor to ‘wiggle’ in the (a,b) plane on going along
the ¢ direction, paraliel to the modulation wave. It will be described in terms of Jones
matrix calculus,

In section 2 we discuss the influence of the spatial dispersion due to the modulation
on the dielectric properties. Section 3 deals with the representation and transformation
by an optical medium, of polarized light. It is an introduction to section 4, in which
the square-wave model will be described. Its implications are summarised in section 5.
In section 6 the measurements on the birefringence and optical activity of TMAZC are
given, and these are interpreted within the framework of the models in section 7. We
draw conclusions in section 8,

2. Spatial dispersion in crystal optics

The electromagnetic properties of a medium are characterised by the (plane)
monochromatic waves that can propagate through it. For a given frequency w and di-
rection of the wavevector k, different plane waves can exist, these being characterised
by their polarizations and refractive indices.

Crystals are spatially inhomogeneous bodies on a microscopic scale. In general,
the dielectric tensor, which describes the optical characteristics of the erystal, will
have a k-dependence due to this spatial dispersion. Agranovich and Ginzburg (1984)
derive the optics of a crystal in the presence of spatial dispersion. In classical crystal
optics, this dispersion can, in most cases, be simplified rigorously. The effect of spatial
dispersion on the optical properties is characterised by the parameter afX = an/h,,
where a is the characteristic dimension, A the wavelength of the plane wave in the
medium, n the refractive index of this wave and A, the wavelength in vacuuo. In a
non-modulated crystal the characteristic dimension a may be taken to be of the order
of the side of crystallographic unit cell, due to the lattice translational symmetry.
Then, away from resonances in frequency {i.e. n not too large) spatial dispersion is
weak. Under these conditions the crystal can be described as a homogeneous medium
with a macroscopic dielectric tensor

e(w, k) = elw) + iv{w) - & {1)

where (w) is the second-rank tensor describing the dielectric properties without taking
spatial dispersion into account, and ~(w) is the third-rank gyration tensor, which is
zero in centrosymmietric materials.
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If a crystal is modulated the optics become more complicated. Consider an elec-
tromagnetic wave propagating through a modulated crystal. Suppose the modulation
is incommensurate, so there is no three-dimensional lattice translational symmetry.
On propagating the wave will ‘sense’ a changing surrounding due to the presence of
the modulation. As a result the wave itself will change while travelling. The charac-
teristic dimension can become much larger than in a non-modulated crystal, and the
optical properties can no longer be described by the tensors e(w) and 4(w). In fact, in
a real, incommensurate crystal the unit cell is, in principle, infinitely large and even
for optical phenomena the effective unit cell is much larger than in the non-modulated
case, This implies that spatial dispersion of £ and ~ has to be taken into account.
To interpret the experimental results we do not need to consider y(w,r). We will be
able to describe the birefringence and optical activity observed by the use of a model
of a spatially dependent dielectric tensor £{w,r}. The origin of this optical activity
is thus different in principle from that due to a non-zero 4(w) in equation (1) for a
non-modulated crystal.

One has to distinguish between local effecis due to the displacive modulation and
global {or long-range order) effects due to the incommensurability of that modulation.
Locally, the modulation gives rise to a structure which deviates from the orthorhom-
bic one allowing for non-diagonal terms in the dielectric tensor with respect to the
orthorhombic axes. Those terms cannot be taken as constant over the whole struc-
ture, because that would be in contradiction with the orthorhombic symmetry of the
average structure. This requirement can be realised by a periodic variation of the
local effects, this being in harmony both with the long-range character of the incom-
mensurability and its periodic nature. To conclude, the effective dielectric medium
is described by local optical axes, periodically deviating from the orthorhombic ones
of the average structure. This is compatible with a description based on the crys-
tallographic structure giving rise to a microscopic space-dependent dielectric tensor
having in its Fourier decomposition non-zero terms allowed by the superspace group
syminetry in a manner described by Meekes and Jaoner (1988). The difference here
is that a mesoscopic scale is considered and no imaginary antisymmetric dielectric
tensor components are required. Indeed, our local dielectric tensor is both real and
symmetric.

For the Jones calculation we will restrict ourselves to a rather simple description of
the deviation angles; we will refer to it as the square waveform. The square wave is well
applicable to the discommensuration regime (in the vicinity of the lock-in temperature
T.), but can also be viewed as the ‘split approximation’ of a sinusoidal modulation
wave,

Suppose that the unmodulated crystal is described by a dielectric tensor compat-
ible with the point group symmetry of the average crystal, which in the present case
is orthorhombic (dropping the notation for the w-dependence):

e 0 0
=10 e 0]. (2)
0 0 g,

We assume the crystal to be transversely modulated with wavevector along the ¢ di-
rection. We will only look at the influence of the square-wave modulation in the
(a,b) plane. This causes the dielectric tensor to wiggle in this plane, meaning that
the modulation gives rise to periodic off-diagonal elements, so that two of the axes
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diagonalizing e(r) oscillate in the plane (a, b} as one moves along the ¢ direction. We
approximate the modulated dielectric tensor by homogeneous platelets parallel to the
(2, b) plane, ensuring average orthorhombic behaviour. Taking into account the sym-
metry restrictions imposed by the superspace group for an appropriate modulation
wavevector as derived by Meekes and Janner {1988), we can write for the contribution
due to the modulation in platelet j

-\-[r P (_):;255 2\
-u’\\ 0""5 6 6}

So the dielectric tensor in platelet j is
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£(3) =eu+cm°d(j). (4)

The eigenvalues of the corresponding matrix e(j) are

Ap = 3e, +65) £ 3y/(eg —e,)? + 166 (5)

and for the two eigenvectors (e:f, ezi), we find the azimuthal angles p ., which reflect
the deviation of the principal axes of e(j) from the orthorhombic axes, namely

+ ) 2
€ (eg—e)) E V{ey —4) +16e2
tanpy = -e;j% = () 2 - :

(6)

The key point now is that due to the modulation there are no longer unique
principal axes of the dielectric tensor for the whole crystal but a succession of locally
twisted ones. The implications of such a situation are worked out in the following
section.

3. Representation of polarized plane waves

Omitting the information about amplitude and absoclute phase, the state of polariza-
tion of a totally polarized plane light wave can be represented by the azimuthal angle
¥ € [0,7), the angle between the major axis of the ellipse of vibration and the positive
direction of the z axis, and the ellipticity angle x € [-n/4,7/4], the arctangent of the
ratio of the semi-minor axis to the length of its semi-major axis. This state can be
represented by a Jones vector, which is two dimensional and has complex components,
The polarization-modifying properties of an optical system which is non-depolarizing,
frequency conserving and linear, can be described by a two dimensional Jones matriz,
which transforms a given (initial) Jones vector into another (final} one. The matrices
of the systems we will discuss are all elements of the group of special unitary trans-
formations SU(2). For a complete description of Jones caleulus see Jones (1941, 1948)
and Azzam and Bashara (1988).
We will discuss three different basic cases.
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3.1, Birefringent medium

The two eigenmodes are linear polarization states (x = 0). The propagation of an
electromagnetic wave can be described by the superposition of the two linearly polar-
ized waves with same frequencies and different propagation velecities. The difference
in velocities, due to the birefringence An gives a phase retardation

- 2w L
App = —An (7)
\

where L is the thickness of the sample and A, the wave length of the light in vacuuo.

3.8. Gyrotropic non-birefringent medium

The two eigenmodes are circular polarization states (y = =7/4). The propagation
of an electromagnetic wave in this medium can be described by the superposition of
two circularly polarized waves with opposite sense of rotation and different velocities.
These different velocities are determined by the two different refractive indices n

nf=nlt@.

Here n, is the refractive index without optical activity and G the gyration coeflicient.
The phase retardation is

Ag=222 (8)

3.8. Gyrotropic birefringent medizm

In a rotating birefringent medium the determination of the solutions of the Fresnel
equations are fairly complicated. Only for special directions of k& can the solutions
be easily found. The general case can often be simplified by neglecting the influence
of the birefringence on the gyration. This means, in fact, that the total phenomenon
is treated as a superposition of the two separate effects. In this approximation the
solutions of the Fresnel equations give rise to two elliptically polarized waves with
the main axes perpendicular, equal ellipticities and opposite sense of rotation. The
velocities of propagation of the two waves are different and [omitting the notation
for the implicit dependence of G on the birefringence) determined by corresponding
refractive indices (Born 1933)

n} = L(n2 +ng? & \/(nZ — ng?)? + 4G?) ©)

with n;, and ng the refractive indices in absence of the gyrotropy and (@ the gyration
coefficient.
The ellipticity angle, defined by

Ay G
As,  aAn

(10)

tan 2y =
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where #i is the mean refractive index. The phase retardation is

A=ZZ(ny-n). (11)
"\D

From this equation and the expressions for the sum and product of the roots ni asin
equation {9) we derive

9 anL\? 9 9 P 2rL\’ 2 Mo 12 iy 21
A= v {n++n_—2 ﬂ+n-}= 5 {nu + 1" — 24/ngny ’”G}‘
0

0
(12}

For most cases we may assume G < ng,ny?; so that using equations (7) and (8) we
may write

2nl ? . ! " Gz .
8= (57) (o= e i) = st st 4

4. Square-wave model

As already explained, the transformation of a state of polarization by an optical device
can be described by a 2x 2 complex matrix, the Jones matrix. It gives the Jones vector
of the outgoing polarization state for a given incoming polarization state. An optical
system can be characterised completely, by its two eigenmodes (the eigenvectors of
the Jones matrices) and the corresponding eigenvalues.

The Jones matrix of a birefringent platelet with its principal axes making an angle
¥ with the reference axes, is given by

W = R($)W,(D)R(-¥) (14)

where R(1) is the rotation matrix and W, is the Jones matrix for the retardation
plate. These are given by

_ f{cosy —siny
R{v) = (Sinu'; cos ¥ ) (15)
e—il'/2 0 )

Wy (') = ( 0 /2 (16)

where T is the retardation of the platelet. The matrix W is unitary (WIw = 1).
Consider two identical birefringent platelets with thickness A/2 and retardation
T'/2 put together with different azimuthal angles: the first with #(z) = p and the
second with ¢(2) = —p (see figure 1). The two platelets together form one unit cell of
the modulation; a modulated finite crystal can be seen as a long sequence of these unit
cells. Note that such a unit cell has no inversion symmetry, although its average has.
We characterise this unit cell by a Jones matrix S +- One can also consider a Jones
matrix 5_ describing the unit cell one obtains from the previous one by total inversion,
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Figure 1. One unit cell for the square modulation wave {see text).

This system consists of the same platelets, now the first platelet has ¢(z) = —p and
the second ¢(z) = p. Accordingly we have (cf Yariv and Yeh 1984)

S, = V:r-vi (17)
where
Vi = R(Ep)Wo(T/2)R(Fp) . (18)

Substituting equations {15) and (16) we obtain

_fa+ib Fic _{A+iB £C
Vs = ( tie a—ib) Sy = ( +C A—iB) (19)
where
a=cosT/4 A =cos?T/4 — cos4psin®T /4

b= —cos2psinl/4 B = —cos2psin /2
e= —sin2psin /4 C = —sin4psin®T'/4.

The eigenmodes of V. are linear polarization states with azimuthal angles $¥Z,

and w}'aﬁ, with

Uyay = %p
Vi (20)
and the retardation of half the unit cell is still
AVE =1/2, (21)

The eigenvalues of S, are given by

Apy=A+i1VBI 1 C2.
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So the retardation AS¥ of the unit cell becomes

ASi = a'rg(Afast) - a'rg(Aslow)

- gtan—l(__w)
- A

\/4 cos? 2pcot? I'/4 + sin® 4p
2tan~! > . (22)
cot’T'/4 — cosdp

The eigenmodes of S, are elliptic eigenmodes oriented along the reference coordi-

nate axes (the orthorhombic axes) with ellipticity angles xglfw and X?afw with

s —cot /4 + {/cot? T/4 +sin® 2p
tan y t =4

slow

sin 2p
(23)

—cot['/4 — \/cot2 ['/4 4 sin®2p
sin 2p ’

5. Interpretation of the model

The results derived in the previous section simplify significantly if we take T < 1.
Considering from (17) merely the case S, and the slow ray, we may write for the
ellipticity angle, using equation (23)

x° = iTsin2p (24)
and for the retardation, with equation (22)

AS ~ T cos 2p. (25)
From these two equations one obtains the azimuthal angle

tan 2p =~ 8y /AS {(26)
and the retardation per semi-unit cell (V)

'~ 8x%/sin2p. (27)

The model shows that a unit cell containing a complete period of the modulated
tensor has elliptic eigenpolarizations the main axes of which coincide with the crystal-
lographic (orthorhombic) axes. A sequence of identical unit cells will have the same
eigenpolarizations (meaning the same ellipticity), so such a system will be birefringent
and optically active. The retardation of a sequence of M identical unit cells will be
M times the retardation of one unit cell. One remaining problem arises from the fact
that the optical properties of such a crystal are very sensitive to its boundaries. If
a sequence of M unit cells S, is enlarged by a semi-unit cell on one side and one
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on the other side (a V_ at the starting boundary and a V. at the end), a sequence
of M + 1 S_ unit cells is obtained, with an opposite ellipticity. So we see that the
crystals boundary surfaces select the eigenpolarizations; they cause the breaking of
the symmetry. The electrostatic energies of the boundaries allow only some of the
possible configurations, with minimal energies. However, if a given configuration is
allowed, its enantiomorphic configuration is also allowed; which of the two will be
realised depends on the surface effects.

In section 7 we will see that the temperature dependence of the birefringence and
optical activity measured in the INC phase of TMAZC can be understood as a specific
temperature behaviour of the azimuthal angle p, and we will relate this behaviour to
the modulated dielectric tensor &(j) of equation (4).

6. Optical measurements on TMAZC

In this section only some of the results of the measurements will be reported for
illustrating the applicability of the approach presented in this paper for interpreting
the optical activity observed. A more complete report will be published somewhat
later.

A TMAZC crystal was grown from an aqueous solution as described by Arend ef
al (1986). A sample was sawn perpendicular to the ¢ axis and polished to a thickness
of 2.57+0.05 mm. With the HAUP the birefringence and gyration were determined
for the para-electric phase I, the incommensurate phase II and the commensurate
Jock-in phase HI. A red He-Ne laser (A, = 632.8 nm) was used as light source. The
measurements were performed for the two different extinction directions.

A n(0,0,1)*10*

#
’

/

Te T,
! 1

270 310

=90 900
TEMPERATURE (K)
Figure 2. Birefringence along the ¢ direction An(0,0,1) of TMAZC. Open circles
refer to the measurements with the incoming polarization along the a direction, the
full circles refer to those along the b direction.

In figure 2 the results for the birefringence An(0,0,1) are given. The INC phase
extends from the normal-INC phase transition temperature T} = 297 K to the lock-in
temperature T, = 280 K. At T = 288 K the birefringence goes through zero.
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Figure 3. Ellipticity angle x as found from the measurements with the polarization
along the a direction (open circles} and along the b direction (full circles).

The results for x are plotted in figure 3. Note that in the vicinitly of T, the data
for both extinction directions differ. The measurements close to T} are less accurate
due to the fact that the precise extinction directions, in so far as they are present,
are difficult to determine. The error in x caused by this experimental problem is
only present for temperatures that within 1 K of T}, so the differences for x for the
different extinction directions have to be taken seriously and are certainly not due to
this restriction of the experimental method. Their cause is subject for further study.
In the lock-in phase the results for v scatter very much due to the discommensurations
(as explained in section T), so the data below T, are unfit for interpretation.
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Figure 4. Gyration along the ¢ direction G(0,0,1) of TMazZC, Open circles refer
to the measurements with the incoming polarization along'the a direction, the full
circles refer to those along the b direction.

To obtain the optical activity G(0,0,1) from the HAUP data we measured with
an Abbe refractometer and by the method of ‘minimum deviation angle’ the effective
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refractive index to be i = 1.527 &+ 0.002. In figure 4 the results for G(0,0,1) are
plotted. The differences in x for different extinction directions are reflected very
drastically in the gyration. The behaviour of the gyration for temperatures between
200 K and 297 X is easier to interpret, while the results for both a- and b-polarizations
are the same. In this region G(0,0,1) goes from zero at T} to approximately 2 x 10~7
continuously.

7. Application of the model to TMazcC

To calculate from the model the birefringence and optical activity for a realistic mate-
rial we need to estimate the length L for the unit cell used in the model. Meekes and
Janner (1988) have shown that in the INC phase long-wavelength Fourier components
h = (0,0,1,m) = Ic* + mq (where g is the modulation wavevector) are present. If
one of these becomes dominant, then its wavelength will determine L. We will not go
into the details of this, because we will see that even values for L that differ in two
orders of magnitude do not give significantly different results. We will assume L to be
larger than the modulation wavelength L, 4 and smaller than the discommensuration
distance Lpygc-

We have the modulation wave with wavevector g = v¢* on an orthorhombic basic
lattice. At the lock-in phase transition temperature 7., 4 jumps from an incommen-
surate value v = (r + 6)/s, with r,s integers and & a small (irrational) number, to a
commensurate value 7, = r/s. Due to this discontinuity the crystal will not lock-in
homogeneously, but will do so in domains which are commensurate, but with differ-
ent phases, separated by discommensurations in which the phase changes relatively
rapidly. The distance between the discommensurations is given by

Lpise = (r/6)e (28)
with ¢ the length of the orthorhombic unit cell in the ¢ direction. Lpge can become
quite large (of the order of 100 nm).

For TMAZC the length of the modulation wavevector < jumps at T, from 7 = 0.405
toy, = % {(Marion 1981). This gives an estimation for the discommensuration distance

LDISC = 80c¢ ~ 100 nm (29)
where we have used ¢ = 12.28 A (Marion 1981). The modulation wavelength is

Looa =047t xec~3am. (30)
The wavelengths Lp;w of relevant Fourier long waves are of the order of 10 nm (Meekes
and Janner 1988, Dijkstra ef al 1991) are within the corresponding range. Accordingly,
the length of the unit cell is estimated to be

Lo ~3nm< L < Lpge =~ 100 nm. (31)

Then the retardation of a unit cell becomes

3x10°% < A = (2xL/),)An(0,0,1) < 10~* (32}
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where we have taken A, = 632.8 nm and An(0,0,1) = 10™*.

Equation (6) shows that values for p ~ 7 /4 can be obtained if de;, > ¢, — ¢, =
2iAn, with An the birefringence for the non-modulated crystal. In this case the
retardation of a unit cell A becomes much smaller than the retardation of a semi-unit
cell I'/2. This reflects the fact that the internal fields can be rather strong, but that
due to averaging the resulting macroscopic fields are much smaller., Furthermore, we
see from equation (24) that for p — 0, ¥ — O very rapidly and A becomes equal to T’
(25), as one should expect for a non-modulated system. .

One striking feature in the experimental results is that the ellipticity angle ¥ reach
a maximum at T, where the birefringence, and so the retardation per unit cell A, is
zero. This can be understood with equations (24) and (25) to be due to the fact that
at Ty p = n/4. In reality, more parameters are expected to be involved than are taken
into account in this model. Our main goal, however, is here to find an explanation
for the presence of optical activity in centrosymmetric INC phases. The question that
must be answered now is: what hypotheses in the model cause the symmetry to be
broken?

The Hamiltonian of the infinite, incommensurately modulated crystal has inversion
symmetry, but the spontaneous realisation of the INC phase in a finite erystal breaks
this symmetry. In the model we needed a definite starting and ending value, i.e.
we considered a sequence of complete unit cells starting with a definite value for
the azimuthal angle for the first semi-unit cell. Which one depends on accidental
local perturbative effects, but then the last semi-unit cell is fixed by a periodicity
requirement. This means physically that the phase of the modulation at one boundary
of the crystal is related to the phase at the other boundary. The finite electrostatic
energies of these boundaries could be the main cause for this.

8. Concluding remarks

The optical properties in the INC phase have to be treated very carefully. The presence
of optical activity cannot be described by the average structure, which is homogeneous
and centrosymmetric. The spatial dependence of the dielectric function due to the
modulation has to be taken into account properly. Essential to a proper understand-
ing is the interplay between local deviation from a centrosymmetric average structure
and the global periodicity of the incommensurate modulation. In this paper an ex-
planation is given for the presence of optical activity in the INC phase using Jones
calculus to treat the spatial dispersion of the dielectric tensor. The model described
gives elliptic eigenmodes for a sequence of full unit cells. Elliptic eigenmodes corre-
spond to systems that are birefringent and optically active. The unit cells in the model
are no longer centrosymmetric, but their spatial average is. The experimental results
for G(0,0,1) and An(0,0,1) indicate that an additional dielectric tensor component
€5, which describes the locally wiggling of the dielectric tensor in the (a,b) plane,
is quite large with respect to the effect of the birefringence nAn, particularly at the
temperature for which the birefringence is zero. The temperature behavicur of the
birefringence and the optical activity ¢an be described by a particular temperature
dependence of the parameters involved. The differences that are found between the
measurements with the incoming light polarized along the different extinction direc-
tions cannot be explained at present. The particular role of the b direction (being
parallel to the polarization of the modulation) may be the relevant structural element
in this.
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The spontaneous realisation of an INC phase in a (finite) crystal causes the break-
ing of the inversion symmetry. The boundaries of the crystal are the cause of this. The
electrostatic energies of the boundaries only allow some configurations, with minimal
energies, to occur in reality. But given a certain allowed configuration the enantiomor-
phic configuration is also allowed. We therefore expect that for many experiments on
different samples the gyration effects will show both signs.
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